120 research outputs found

    On scission configuration in ternary fission

    Full text link
    A static scission configuration in cold ternary fission has been considered in the framework of two mean field approaches. The virial theorems has been suggested to investigate correlations in the phase space, starting from a kinetic equation. The inverse mean field method is applied to solve single-particle Schredinger equation, instead of constrained selfconsistent Hartree-Fock equations. It is shown, that it is possible to simulate one-dimensional three-center system via inverse scattering method in the approximation of reflectless single-particle potentialsComment: 11 pages, 1 figure, Fusion Dynamics at the Extremes, Int. Workshop, Dubna, Russia, May 2000. To be published in World Scientifi

    Ternary configuration in the framework of inverse mean-field method

    Get PDF
    A static scission configuration in cold ternary fission has been considered in the framework of mean field approach. The inverse scattering method is applied to solve single-particle Schroedinger equation, instead of constrained selfconsistent Hartree-Fock equations. It is shown, that it is possible to simulate one-dimensional three-center system via inverse scattering method in the approximation of reflectless single-particle potentials.Comment: 8 pages, 1 figure, iopart.cls, to be published in Int.J.Mod.Phys.

    Pairing and continuum effects in nuclei close to the drip line

    Get PDF
    The Hartree-Fock-Bogoliubov (HFB) equations in coordinate representation are solved exactly, i.e., with correct asymptotic boundary conditions for the continuous spectrum. The calculations are preformed with effective Skyrme interactions. The exact HFB solutions are compared with HFB calculations based on box boundary conditions and with resonant continuum Hartree-Fock-BCS (HF-BCS) results. The comparison is done for the neutron-rich Ni isotopes. It is shown that close to the drip line the amount of pairing correlations depends on how the continuum coupling is treated. On the other hand, the resonant continuum HF-BCS results are generally close to those of HFB even in neutron-rich nuclei.Comment: 9 figures, corrected ref.

    Temperature dependent BCS equations with continuum coupling

    Get PDF
    The temperature dependent BCS equations are modified in order to include the contribution of the continuum single particle states. The influence of the continuum upon the critical temperature corresponding to the phase transition from a superfluid to a normal state and upon the behaviour of the excitation energy and of the entropy is discussed.Comment: 9 pages, 3 figures, to appear in Phys. Rev.

    Detecting Singleton Review Spammers Using Semantic Similarity

    Full text link
    Online reviews have increasingly become a very important resource for consumers when making purchases. Though it is becoming more and more difficult for people to make well-informed buying decisions without being deceived by fake reviews. Prior works on the opinion spam problem mostly considered classifying fake reviews using behavioral user patterns. They focused on prolific users who write more than a couple of reviews, discarding one-time reviewers. The number of singleton reviewers however is expected to be high for many review websites. While behavioral patterns are effective when dealing with elite users, for one-time reviewers, the review text needs to be exploited. In this paper we tackle the problem of detecting fake reviews written by the same person using multiple names, posting each review under a different name. We propose two methods to detect similar reviews and show the results generally outperform the vectorial similarity measures used in prior works. The first method extends the semantic similarity between words to the reviews level. The second method is based on topic modeling and exploits the similarity of the reviews topic distributions using two models: bag-of-words and bag-of-opinion-phrases. The experiments were conducted on reviews from three different datasets: Yelp (57K reviews), Trustpilot (9K reviews) and Ott dataset (800 reviews).Comment: 6 pages, WWW 201

    Entanglement dynamics of bipartite system in squeezed vacuum reservoirs

    Full text link
    Entanglement plays a crucial role in quantum information protocols, thus the dynamical behavior of entangled states is of a great importance. In this paper we suggest a useful scheme that permits a direct measure of entanglement in a two-qubit cavity system. It is realized in the cavity-QED technology utilizing atoms as fying qubits. To quantify entanglement we use the concurrence. We derive the conditions, which assure that the state remains entangled in spite of the interaction with the reservoir. The phenomenon of sudden death entanglement (ESD) in a bipartite system subjected to squeezed vacuum reservoir is examined. We show that the sudden death time of the entangled states depends on the initial preparation of the entangled state and the parameters of the squeezed vacuum reservoir.Comment: 10 pages, 5 figures, CEWQO17(St Andrews

    A New Nonlinear Liquid Drop Model. Clusters as Solitons on The Nuclear Surface

    Full text link
    By introducing in the hydrodynamic model, i.e. in the hydrodynamic equations and the corresponding boundary conditions, the higher order terms in the deviation of the shape, we obtain in the second order the Korteweg de Vries equation (KdV). The same equation is obtained by introducing in the liquid drop model (LDM), i.e. in the kinetic, surface and Coulomb terms, the higher terms in the second order. The KdV equation has the cnoidal waves as steady-state solutions. These waves could describe the small anharmonic vibrations of spherical nuclei up to the solitary waves. The solitons could describe the preformation of clusters on the nuclear surface. We apply this nonlinear liquid drop model to the alpha formation in heavy nuclei. We find an additional minimum in the total energy of such systems, corresponding to the solitons as clusters on the nuclear surface. By introducing the shell effects we choose this minimum to be degenerated with the ground state. The spectroscopic factor is given by the ratio of the square amplitudes in the two minima.Comment: 27 pages, LateX, 8 figures, Submitted J. Phys. G: Nucl. Part. Phys., PACS: 23.60.+e, 21.60.Gx, 24.30.-v, 25.70.e

    Decoherence and thermalization dynamics of a quantum oscillator

    Get PDF
    We introduce the quantitative measures characterizing the rates of decoherence and thermalization of quantum systems. We study the time evolution of these measures in the case of a quantum harmonic oscillator whose relaxation is described in the framework of the standard master equation, for various initial states (coherent, `cat', squeezed and number). We establish the conditions under which the true decoherence measure can be approximated by the linear entropy 1Trρ^21-{Tr}\hat\rho^2. We show that at low temperatures and for highly excited initial states the decoherence process consists of three distinct stages with quite different time scales. In particular, the `cat' states preserve 50% of the initial coherence for a long time interval which increases logarithmically with increase of the initial energy.Comment: 24 pages, LaTex, 8 ps figures, accepted for publication in J. Opt.

    The Quasi-Molecular Stage of Ternary Fission

    Get PDF
    We developed a three-center phenomenological model,able to explain qualitatively the recently obtained experimental results concerning the quasimolecular stage of a light-particle accompanied fission process. It was derived from the liquid drop model under the assumption that the aligned configuration, with the emitted particle between the light and heavy fragment, is reached by increasing continuously the separation distance, while the radii of the heavy fragment and of the light particle are kept constant. In such a way,a new minimum of a short-lived molecular state appears in the deformation energy at a separation distance very close to the touching point. This minimum allows the existence of a short-lived quasi-molecular state, decaying into the three final fragments.The influence of the shell effects is discussed. The half-lives of some quasimolecular states which could be formed in the 10^{10}Be and 12^{12}C accompanied fission of 252^{252}Cf are roughly estimated to be the order of 1 ns, and 1 ms, respectively.Comment: 12 pages, 6 epsf, uses ws-p8-50x6-00.cl

    Cooper pair sizes in 11Li and in superfluid nuclei: a puzzle?

    Full text link
    We point out a strong influence of the pairing force on the size of the two neutron Cooper pair in 11^{11}Li, and to a lesser extent also in 6^6He. It seems that these are quite unique situations, since Cooper pair sizes of stable superfluid nuclei are very little influenced by the intensity of pairing, as recently reported. We explore the difference between 11^{11}Li and heavier superfulid nuclei, and discuss reasons for the exceptional situation in 11^{11}Li.Comment: 9 pages. To be published in J. of Phys. G special issue on Open Problems in Nuclear Structure (OPeNST
    corecore